باغچه آفتزده آبولف (۲۰ نمره)
باغچه آبولف به صورت یک جدول ۱۳۹۸ در ۱۳۹۸ است. به مجموعه ای از ۱۳۹۸ خانه جدول سلطانی میگوییم اگر هیچ دو تا از آن ها همسطر یا همستون نباشند. خانه واقع در سطر i ام و ستون j ام را با (i,j) نمایش میدهیم.
در ابتدا در تمام خانههای (i,j) که i<j است آفتی قرار دارد. آبولف دستگاهی خریده است که میتواند مجموعه ای سلطانی از جدول انتخاب کند و تمام خانههای آن را دگرگون کند. پس از تعداد دلخواهی مرحله استفاده از دستگاه، کمینه تعداد آفت هایی که آبولف در باغچه اش خواهد داشت چیست؟
پاسخ
پاسخ برابر $\frac{1398}{2} = 699 $ است.
ابتدا روشی برای سلطان ارائه میکنیم که در پایان، حداکثر ۶۹۹ آفت وجود داشته باشد. فرض کنید سطر ها از بالا به پایین و ستون ها از چپ به راست شماره گذاری شده باشند. به قطری که خانه $(1,1398)$ تا خانه $(1398,1)$ را در بر میگیرد، قطر آبولفی میگوییم.
خانه هایی که ابتدا آفت دارند ( خانههای زیر قطر اصلی ) را به صورت قطری لایه بندی میکنیم. ( بزرگترین قطر که ۱۳۹۷ خانه دارد لایه ۱ و کوچک ترین قطر کهیک خانه دارد را لایه ۱۳۹۷ مینامیم ) به ازای هر $1\le i \le 1398$ سلطان در مرحله i ام خانههای لایه i به همراه خانههای ۱ تا i قطر آبولفی را انتخاب کند. با این روش در انتهای کار تنها خانههای قطر آبولفی میتوانند آفت داشته باشند. اگر در قطر آبولفی بیش از نصف آفت وجود داشت، یک بار دستگاه را روی قطر آبولفی اعمال میکنیم. با این روش، حداکثر ۶۹۹ آفت در باغچه خواهیم داشت.
حال ثابت میکنیم در هر لحظه حداقل 699 آفت در جدول وجود دارد. بهیک سطر فرد میگوییم اگر تعداد فردی آفت داشته باشد. به همین ترتیب سطر زوج را تعریف میکنیم. در هر مرحله سطرهای زوج، فرد میشوند و بالعکس ( زیرا دقیقا یک خانه از هر سطر تغییر وضعیت میدهد. در ابتدا ۶۹۹ سطر فرد و ۶۹۹ سطر زوج داریم. پس همواره ۶۹۹ سطر فرد خواهیم داشت که هر کدام دست کم یک آفت دارند.