سوال ۹

گراف ۲۰ راسی زیر با راس‌های $1, 2, \cdots , 20$ را در نظر بگیرید. به چند طریق می‌توان از این گراف تعدادی یال حذف کرد به طوری که گراف همبند بماند؟ توجه کنید یک حالت این است که هیچ یالی حذف نکنیم.

  1. $207391$
  2. $946025$
  3. $2 \times 4^{10}$
  4. $834261$
  5. $738634$

پاسخ

گزینه (۲) درست است.

$a_n$ را تعداد حالات خواسته شده برای یک گراف $2n$-راسی در نظر می‌گیریم. $b_n$ را نیز مانند $a_n$‌ تعریف می‌کنیم؛ با این تفاوت که از قبل بدانیم بین دو راس سمت چپ مسیری وجود داشته است. داریم:

$$a_n=3a_{n-1}+b_{n-1}$$

و

$$b_n=4a_{n-1}+2b_{n-1}$$

از روابط بازگشتی بالا مقدار $a_{10}$ که پاسخ مسئله است به‌دست می‌آید.