المپدیا

دانش‌نامه‌ی المپیاد کامپیوتر ایران

ابزار کاربر

ابزار سایت


سوالات المپیاد:مرحله ی اول:دوره ی ۳۰:سوالات ۱۴ تا ۱۶

سوالات ۱۴ تا ۱۶

فرض کنید دنباله‌ای از اعداد طبیعی داریم. در هر مرحله می‌توانیم دو عدد متوالی از دنباله انتخاب کرده، یکی از آن‌ها را یک واحد افزایش و دیگری را یک واحد کاهش دهیم (پس از انجام مرحله، اعداد دنباله باید مثبت بمانند). به این عمل ارتودنسی می‌گوییم!

برای مثال دنباله‌ی {۴, ٢, ۵, ٣, ١} با یک عمل ارتودنسی می‌تواند به {۴, ١, ۶, ٣, ١} تبدیل شود. به یک دنباله صاف و صوف گوییم، اگر تمام اعضای آن ٣ باشند.

سوال ۱۴

کدام یک از دنباله‌های زیر، با تعداد کم‌تری عمل ارتودنسی می‌توانند صاف و صوف شوند؟

  1. ⟨٣, ١, ٣, ۵, ٣⟩
  2. ⟨٢, ۵, ١, ۴, ٣⟩
  3. ⟨١, ٢, ٣, ۴, ۵⟩
  4. ⟨٣, ٢, ٢, ۴, ۴⟩
  5. ⟨٢, ٣, ٣, ٣, ۴⟩

سوال ۱۵

چند دنباله‌ی پنج عضوی از اعداد طبیعی وجود دارد که می‌توانند با تعدادی مرحله، صاف و صوف شوند؟

  1. ۳۱۲۵
  2. ۳۰۶۰
  3. ۱۲۰
  4. ۲۴۳
  5. ۱۰۰۱

راهنمایی

ثابت کنید شرط لازم و کافی این است که مجموع اعداد ۱۵ باشد.

سوال ۱۶

فرض کنید تعدادی عمل ارتودنسی روی دنباله‌ای انجام شود. گوییم یک عدد در دنباله در حین مراحل زخمی شده‌است، اگر دست کم یک بار افزایش و دست کم یک بار کاهش یافته باشد. چند جایگشت از اعداد ١ تا ۵ را می‌توان با تعدادی عمل ارتودنسی صاف و صوف کرد، طوری که هیچ عددی در حین مراحل زخمی نشود؟

  1. ۱۲
  2. ۱۶
  3. ۲۴
  4. ۲۸
  5. ۱۲۰

راهنمایی

ثابت کنید در یک جایگشت مطلوب، عدد ۱ و ۵ باید مجاور باشند.


ابزار صفحه