المپدیا

دانش‌نامه‌ی المپیاد کامپیوتر ایران

ابزار کاربر

ابزار سایت


سوالات المپیاد:مرحله ی دوم:دوره ی ۸:سوال ۸

ماتریس عجیب

یک ماتریس به ابعاد $n^2 \times (n + 1)$ ($n^2$ سطر و $n+1$ ستون) داده شده است. این ماتریس با اعداد ۱ تا $n$ پر شده است٬ به طوری که برای هر دو ستون این ماتریس٬ اگر عناصر این دو ستون را در کنار هم بنویسیم٬ هر یک از $n^2$ زوج ممکن از عددهای ۱ تا $n$ را در یک سطر می‌بینیم. برای مثال٬ برای $n =2$٬ ماتریس زیر دارای چنین خاصیتی است.

$$ \begin {bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \\ \end {bmatrix} $$

ثابت کنید هر دو سطر این ماتریس دقیقاً در یک درایه‌ی متناظر٬ با هم برابرند؛ یعنی برای هر دو سطر دل‌خواه $i$ و $j$٬ فقط یک ستون وجود دارد که مقادیر درایه‌های سطر $i$ام و سطر $j$ام در آن یکسان باشند.


ابزار صفحه