المپدیا

دانش‌نامه‌ی المپیاد کامپیوتر ایران

ابزار کاربر

ابزار سایت


سوالات المپیاد:دوره ی تابستان:دوره ی ۳۱:عملی نهایی اول:سوال ۱

آقای بین (Mr.Bean)

مبین و مبینا می‌خواهند با بازی فکری جدیدی که پدربزرگشان، مستربین برایشان خریده است بازی کنند. مبین دفترچه راهنمای بازی را می‌خواند و بازی را برای مبینا شرح می‌دهد:

«این بازی فقط از تعدادی آجر تشکیل شده است. در ابتدا آجرها را در $n$ ردیف بچینید و در ردیف $i$ام $a_i$ آجر را روی هم قرار دهید. شما در هر دقیقه می‌توانید تعدادی ردیف متوالی که تعداد آجرهای آن‌ها به یک اندازه است را انتخاب کنید و به همه‌ی آن‌ها به تعداد مساوی آجر اضافه کنید یا از آجر‌هایش بکاهید. به عبارتی دیگر می‌توانید یک بازه $l \leq r$ و عدد صحیح $x$ انتخاب کنید به طوری که $a_i = a_l$ به ازای تمامی $l \leq i \leq r$ برقرار باشد، سپس تمامی اعضای این بازه را با $x$ جمع کنید.

به طور مثال اگر دنباله $a = \langle 4, 2, 2, 2, 3, 2 \rangle$ باشد، می‌توانید با انتخاب بازه $l = 2$ و $r = 3$ و عدد صحیح $x = -1$ دنباله را به $a = \langle 4, 1, 1, 2, 3, 2 \rangle$ تبدیل کنید.

هدف بازی این است که در کمترین زمان ممکن کاری کنید که همه‌ی ردیف‌ها به یک اندازه آجر داشته باشند.»

مبین و مبینا که خیلی کوچک هستند از پس این بازی برنمی‌آیند و از شما کمک می‌خواهند تا کمترین زمان ممکن برای انجام بازی را پیدا کنید.

ورودی

در خط اول $n$ تعداد ردیف‌ها می‌آیند.

در خط دوم $n$ عدد $a_1, a_2, ..., a_n$ به ترتیب می‌آیند.

خروجی

کمترین زمان ممکن برای برابر کردن تعداد آجرهای تمامی ردیف‌ها را چاپ کنید.

زیرمسئله‌ها

  • زیرمسئله اول (۹ نمره): عدد طبیعی $x$ وجود دارد که $a_i \leq a_{i+1}$ به ازای تمامی $i < x$ و $a_i \geq a_{i+1}$ به ازای تمامی $i\geq x$ برقرار است.
  • زیرمسئله دوم (۲۰ نمره): $n \leq 100$
  • زیرمسئله سوم (۳۲ نمره): $n \leq 300$
  • زیرمسئله چهارم (۳۹ نمره): بدون محدودیت اضافی

محدودیت‌ها

  • محدودیت زمان: ۱ ثانیه
  • محدودیت حافظه: ۲۵۶ مگابایت
  • $2 \leq n \leq 750$
  • $1 \leq a_i \leq n$

ورودی و خروجی نمونه

ورودی نمونه خروجی نمونه
5
1 2 3 3 1
2
5
1 3 2 1 3
3

ابزار صفحه